
Script Tools 1.3
Reference Guide

Script Tools 1.3 and Script Tools 1.3 Reference Guide
Copyright © 1993-1995 Mark Alldritt
All Rights Reserved
1571 Deep Cove Road
North Vancouver, B.C.
CANADA V7G - 1S4

Internet: alldritt@wimsey.com

Voice: (604) 929-5578
FAX: (604) 929-4961

The Regular Expression processing software used in this package was written
by Henry Spencer and is Copyright © 1986 by University of Toronto.

Apple, the Apple Logo, Macintosh, AppleScript, System 7 are trademarks of
Apple Computer, Inc.

NOTICE:
The Script Tools software and this document are provided AS IS. The author is
not responsible for any damages caused either directly or indirectly by the
Script Tools software.

Table Of Contents

Introduction iii
About this guide iii
What you need to get started iii
Using and copying Script Tools iii
Installing Script Tools on your Macintosh iv
Script Tools Examples iv
Script Tools Libraries v

Script Tools Additions 1
Choose Folder 1
Choose New File 2
Choose Several Files 3
Choose Several Folders 4
Get Default Folder 6
Set Default Folder 6
Shutdown 7
Open File 7
Close File 8
Create File 9
Create Folder 9
Delete File 10
Rename File 11
Exchange File 12
Move File 12
Read File 13
Write File 14
Get File Position 14
Position File 15
Get Length 16
Lengthen File 16
Compile Regular Expression 17

Match Regular Expression 18
Substitute Regular Expression 19

Replacements for Regular Expressions 20
Speak 20
List Voices 21
Get Voice 22
Get Gestalt 23
List Processes 24
Get Process 24
Get Foreground Process 26
Get Current Process 27
List Screens 27

Addition/Command Cross Reference 1

Introduction

The ScriptTools package contains a series of additions to AppleScript, Apple’s
new scripting language for the Macintosh. If you are trying to automate any
type of activity with AppleScript then Script Tools is a must. Many of the
features of ScriptTools allow you to do things which simply cannot be done
with AppleScript alone.

About this guide
This guide provides reference material describing each of the Script Tools
AppleScript additions.

This guide assumes you are already familiar with the Macintosh and have
some experience with AppleScript. If you’re unfamiliar with these skills, refer
to the manuals that came with your computer and AppleScript.

What you need to get started
To use Script Tools, your Macintosh computer must be running system software
version 7.0 or later; have at least 4 megabytes of memory; and have AppleScript
1.0 or later installed.

To use the Speech AppleScript addition you will require version 1.1.1 of
Apple's Speech Manager software.

Using and copying Script Tools
Please feel free to distribute Script Tools to friends and colleagues. However,
Script Tools may not appear as part of any promotional offer or commercial
product without the author's expressed written permission. Commercial re-
distribution licenses are available through the author.

When distributing Script Tools, please distribute the entire package as you
received it.

Installing Script Tools on your Macintosh
To install Script Tools, copy the contents of the Additions folder to the Scripting
Additions folder within the Extensions folder in your System Folder.

Script Tools Examples
The Examples folder contains a series of example AppleScript scripts showing
how to use the new commands provided by Script Tools.
Choose Folder Example

This short example shows the Script Tools Choose Folder
command in use.

Choose File In Prefs Folder
This example shows how the use the Set Default Folder and Get
Default Folder commands to control the starting folder presented
by the Choose File command.

Choose New File Example
This short example shows the Script Tools Choose New File
command in use.

Choose Several Files Example
This short example shows the Script Tools Choose Several Files
command in use.

Choose Several Folders Example
This short example shows the Script Tools Choose Several
Folders command in use.

Backup Folders This script uses the Script Tools Choose Several Folders
and Choose Folder command to identify a series of folders that
are to be backed up and a folder where the backup is to be stored.
The backup is performed using StuffIt Lite via AppleEvent
commands.

Shutdown This example illustrates the use of the Script Tools Shutdown
command.

File IO Example This example creates a text file and writes a short message
to it using the Script Tools File IO commands.

File IO Example II
This example opens a text file and displays the contents of the
file line by line.

Regular Expression Example
This example uses the Script Tools Regular Expression
commands to modify the names of all the files in a folder (note
the file names are not actually changed).

Regular Expression Example II
This example uses Regular Expression and File IO commands to
read and parse a simple text file.

List Folders This example uses the Choose Several Folders and the File IO
commands to produce a listing of the files stored in folders.

Check For Speech Mgr
This example uses the Get Gestalt command to check for the
presents of the Speech Manager.

Quit All Applications
This example illustrates how to use the List Processes, Get
Process and Get Current Process commands to quit all the non-
essential applications running on your Macintosh.

All of these examples are stored as Script Editor text files with the exception of
Folder Watcher and List Folders which are compiled AppleScript application.
The examples stored as text files can be opened using the AppleScript Script
Editor or any text editor which can read TEXT files. The Folder Watcher and
List Folders scripts can only be viewed using the Script Editor.

Script Tools Libraries
The Libraries folder contains the following AppleScript libraries.
gestalt Selector Lib

This library defines the Gestalt selectors which are documented
in Inside Macintosh volume VI.

Script Tools Additions
This chapter describes each of the AppleScript commands in the ScriptTools
package. ScriptTools implements these new commands using AppleScript
additions . AppleScript additions are a special type of software which adds new
features to the AppleScript language.

LNS Choose Folder
The LNS Choose Folder command allows the user to choose a folder by
displaying a dialog box like the one below.

Syntax
choose folder

[with prompt promptString]
[starting at initialFolder]

Parameters
promptString This parameter is a string which is displayed in the dialog box. If

you omit the with prompt parameter, no prompt is displayed.

initialFolder This parameter identifies the initial folder presented.

Result
The result is an alias to the folder selected by the user.

Example
choose folder ¬
 with prompt "Please select a backup folder"

Choose New File
The Choose New File command presents the standard Macintosh new file
selection dialog box.

Syntax
choose new file

[with prompt promptString]
[default name nameString]
[starting at initialFolder]

Parameters
promptString This parameter is a string which is displayed in the dialog box. If

this parameter is omitted the string "Save As:" is displayed.
nameString This parameter is a string which is offered as the default name for

the new file. If this parameter is omitted no default name is
presented.

initialFolder This parameter identifies the initial folder presented.

Result
The result of the Choose New File is a record containing three values:

filename returned
This value is a string representing the name of the new file.

folder returned
This value is an alias to the folder where the new file is to be
placed.

replacing This Boolean value indicates whether or not the new file replaces
an existing file (TRUE = Yes, FALSE = No).

Example
-- Ask the user for a new file
set newFile to choose new file ¬
 with prompt "Select a new archive file:" ¬
 default name "Testing"

-- Show the result on the Script Editor result window
{ (folder returned of newFile as string), ¬
 (name returned of newFile) }

Choose Several Files
The Choose Several Files command presents a modified standard file selection
dialog box allowing the user to choose several files at one time.

Syntax
choose several files

[with prompt promptString]
[of type typeList]
[starting with fileList]
[starting at initialFolder]

Parameters
promptString This parameter is a string which is displayed in the dialog box. If

you omit the with prompt parameter, no prompt is displayed.
typeList This parameter is a list of strings specifying the file types of the

files to be displayed in the dialog box. Each string is a four-
character code for the file type, such as "TEXT", "APPL",
"PICT" or "PNTG". If you omit the of type parameter, all
files are displayed. You may specify up to four file types.

fileList This parameter is a list of aliases referring to files which are to be
displayed as already selected. If you omit the starting with
parameter, the selected files list is left empty.

initialFolder This parameter identifies the initial folder presented.

Result
The result is a list of aliases referring to the files selected by the user.

Example
choose several files ¬
 with prompt "Select files to be archived:" ¬
 of type {"APPL", "TEXT" } ¬
 starting with { alias "Hard Disk:Disinfectant" }

Choose Several Folders
The Choose Several Folders command presents a modified standard file
selection dialog box allowing the user to choose several folders at one time.

Syntax
choose several folders

[with prompt promptString]
[starting with folderList]
[starting at initialFolder]

Parameters
promptString This parameter is a string which is displayed in the dialog box. If

you omit the with prompt parameter, no prompt is displayed.
folderList This parameter is a list of aliases referring to folders which are to

be displayed as already selected. If you omit the starting
with parameter, the selected folders list is left empty.

initialFolder This parameter identifies the initial folder presented.

Result
The result is a list of aliases referring to the folders selected by the user.

Example
choose several folder ¬
 with prompt "Select files to be archived:" ¬
 starting with ¬
 { alias "HD:System Folder:" ¬
 alias "HD:System Folder:Extensions:" }

Get Default Folder
The Get Default Folder command returns the current folder used by the Choose
File and Choose Folder commands in this package and those provided by Apple
as part of AppleScript.

Syntax
get current folder

Result
This command returns an alias to the current default folder.

Example
set saveFolder to get default folder
set default folder path to preferences
choose file
set default folder saveFolder

Set Default Folder
The Set Default Folder command changes the current folder used by the Choose
File and Choose Folder commands in this package and those provided by Apple
as part of AppleScript.

Syntax
set default folder folderPath

Result
This command returns no result.

Parameters
folderPath This parameter is an alias to the folder which is to become the

default folder. If you provide an alias to a file, the folder
containing the file becomes the default folder.

Example
set default folder path to preferences
choose file

Note
This command has no effect under System 7.5 or later. In this case, use the
starting at parameter of the various choose commands.

Shutdown
The Shutdown command shuts down and optionally restarts your Macintosh.

Syntax
shutdown

[with restart]

Result
This command returns no result.

Example
set result to display dialog ¬

"Are you sure you want to shutdown?" ¬
buttons {"Shutdown", "Restart", "Cancel"} ¬ default button

"Cancel"
if button returned of result = "Shutdown" then ¬ shutdown
if button returned of result = "Restart" then ¬ shutdown with
restart

Open File
The Open File command opens a text file for reading and/or writing. This
command, when used with the Read File and Write File commands, allows you
to process text files within scripts without the aid of a scriptable text editor
application.

Syntax
open file file

[for reading|update|writing]

Parameters
file This parameter is a alias to the file which is to opened.

Result
The result a file reference number. You must provide this number to all other
commands you issue when processing the file.

Example
set filePath to choose file ¬

with prompt "Select a file to open:" ¬
of type "TEXT"

set refNum to open file filePath for reading
close file refNum

Notes
When the optional for is not specified, the file is opened for update.
Be careful to ensure you close all the files you open. Due to the nature of
AppleScript additions, the Open File command does not ensure the file is closed
when a script aborts without first closing the file with the Close File command.

Errors
This command can return any of the errors which are returned by the ToolBox
HOpen routine.

Close File
The Close File command closes a file previously opened with the Open File
command.

Syntax
close file fileRefNum

Parameters
fileRefNum This parameter is the reference number of a file. This value is

returned by the Open File command.

Result
none

Example
set filePath to choose file ¬

with prompt "Select a file to open:" ¬
of type "TEXT"

set refNum to open file filePath for reading
close file refNum

Errors
This command can return any of the errors which are returned by the ToolBox
FSClose routine.

Create File
The Create File command creates a new TEXT file.

Syntax
create file fileName

[in folder]
[owner signature]

Parameters
fileName This parameter is the new file’s name.
folder This parameter is an alias to the folder where the new file is to be

placed. If this parameter is omitted the file is created in the
current default folder.

signature This parameter is a list of aliases referring to folders which are to
be displayed as already selected. If you omit the owner
parameter, the new file is given the signature ‘????’.

Result
none.

Example
set newFile to choose new file ¬

with prompt "Pick a new file name:"

create file (filename returned of newFile) ¬
in (folder returned of newFile) ¬
owner "ttxt" -- TeachText

Errors
This command can return any of the errors which are returned by the ToolBox
HCreate routine.

Create Folder
The Create Folder command creates a new folder.

Syntax
create folder folderName

[in folder]

Parameters
folderName This parameter is the new folder's name.
folder This parameter is an alias to a folder where the new folder is to

be placed. If this parameter is omitted the file is created in the
current default folder.

Result
none.

Example
set newFolder to choose new file ¬

with prompt "Pick a new folder name:"

create folder (filename returned of newFolder) ¬
in (folder returned of newFolder)

Errors
This command can return any of the errors which are returned by the ToolBox
DirCreate routine.

Delete File
The Delete File command deletes a file without placing it in the Trash.

Syntax
delete file folders

[with prompt promptString]
[starting with folderList]

Parameters
promptString This parameter is a string which is displayed in the dialog box. If

you omit the with prompt parameter, no prompt is displayed.
folderList This parameter is a list of aliases referring to folders which are to

be displayed as already selected. If you omit the starting
with parameter, the selected folders list is left empty.

Result
The result is a list of aliases referring to the folders selected by the user.

Example
choose several folder ¬
 with prompt "Select files to be archived:" ¬
 starting with ¬
 { alias "HD:System Folder:" ¬
 alias "HD:System Folder:Extensions:" }

Errors
This command can return any of the errors which are returned by the ToolBox
HDelete routine.

Rename File
The Rename File command changes a files name.

Syntax
rename file file to newName

Parameters
file This parameter is a alias which identifies the file whose name is

being changed.
newName This parameter is a text string containing the file's new name.

Result
none.

Example
rename file (choose file) to "Backup"

Errors
This command can return any of the errors which are returned by the ToolBox
PBHRename routine.

Exchange File
The Exchange File command swaps the data stored in two files.

Syntax
exchange file firstFile with secondFile

Parameters
firstFile This parameter is a alias which identifies the first of the two files.
secondFile This parameter is a alias which identifies the second of the two

files.

Result
none.

Example
exchange file (choose file) with (choose file)

Errors
This command can return any of the errors which are returned by the ToolBox
PBExchangeFiles routine.

Move File
The Move File command moves a file or a folder from one folder to another.

Syntax
rename file fileOrFolder to destination

Parameters
fileOrFolder This parameter is an alias which identifies the file or folder being

moved.
destination This parameter is an alias referring to the destination folder for

fileOrFolder.

Result
none.

Note
The file or folder being moved and the destination folder must be on the same
volume.

Example
move file (choose file) to (choose folder)

Errors
This command can return any of the errors which are returned by the ToolBox
PBCatMove routine.

Read File
The Read File command reads a “line” of text from a file opened with the Open
File command. A line in this case means all characters up to the next carriage
return in the file. This is refereed to as a paragraph in some applications since
these lines may wrap around a number of times when displayed in a window.

Syntax
read file fileRefNum

[maximum length maxLength]

Parameters
fileRefNum This parameter is the reference number of a file. This value is

returned by the Open File command.
maxLength This integer parameter specifies the maximum number of

characters you wish to read. Normally the Read File command
reads a maximum of 1024 characters. The practical maximum
for this value is limited only by the memory available.

Result
The result is a string representing the data read from the file.

Example
set myFile to choose file ¬

with prompt "Select a text file:" ¬
of type "TEXT"

set refNum to open file myFile
set inputLine to read file refNum
display dialog inputLine
close file refNum

Errors
This command can return any of the errors which are returned by the ToolBox
PBRead routine.

Write File
The Write File command writes a line to a text file.

Syntax
write file fileRefNum text data

Parameters
fileRefNum This parameter is the reference number of a file. This value is

returned by the Open File command.
data This parameter is the line of text to be written to the file.

Result
none.

Example
set refNum to open file "Sample Test"
write file refNum text "Sample Test"
close file refNum

Errors
This command can return any of the errors which are returned by the ToolBox
FSWrite routine.

Get File Position
The Get File Position command obtains the current position of a file's marker.
A file marker represents the address within a file where the next read or write
will begin.

Syntax
get file position fileRefNum

Parameters
fileRefNum This parameter is the reference number of a file. This value is

returned by the Open File command.

Result
The result is a number representing the address of the files marker.

Example
-- haven't thought of a good one yet

Errors
This command can return any of the errors which are returned by the ToolBox
GetFPos routine.

Position File
The Position File command changes the current position of a file's marker. A
file marker represents the address within a file where the next read or write will
begin.

Syntax
position file fileRefNum at filePosition

Parameters
fileRefNum This parameter is the reference number of a file. This value is

returned by the Open File command.
filePosition This parameter is the new address for the files marker.

Result
none.

Example
-- position the marker at the end of the file so
-- data can be appended to the file
position file refNum to (get length refNum)

Errors
This command can return any of the errors which are returned by the ToolBox
SetFPos routine.

Get Length
The Get Length command obtains the length (in bytes) of the file.

Syntax
get length fileRefNum

Parameters
fileRefNum This parameter is the reference number of a file. This value is

returned by the Open File command.

Result
The number of bytes stored in the file.

Example
-- position the marker at the end of the file so
-- data can be appended to the file
position file refNum to (get length refNum)

Errors
This command can return any of the errors which are returned by the ToolBox
GetEOF routine.

Lengthen File
The Lengthen File command changes the length of a file. You can use the
Lengthen command to shorten or extend the size of a file.

Syntax
lengthen file fileRefNum length fileLength

Parameters
fileRefNum This parameter is the reference number of a file. This value is

returned by the Open File command.
fileLength This parameter is the new length of the file.

Result
none.

Example
-- empty the contents of a file
lengthen file refNum length 0

Compile Regular Expression
The Compile Regular Expression command compiles a pattern string.
Compiled Regular Expressions are used by the Match Regular Expression and
Substitute Regular Expression commands.

Syntax
compile regular expression patternString

Parameters
patternString This parameter is a string which is displayed in the dialog box. If

you omit the with prompt parameter, no prompt is displayed.
For a description of the syntax of pattern strings see the
documentation for the UNIX grep command. Information about
Regular Expressions is also available in the THINK C User's
Guide.

Result
The result is a compiled version of the patternString. This compiled pattern is
used with the Match Regular Expression and Substitute Regular Expression
commands.

Example
set pattern to

compile regular expression "(.*):(*)"

Errors
V1.2 of Compile Regular Expression does not report any errors. If there is a
problem with the pattern string a null expression ("") is returned. Future
releases will return errors indicating the type of problem found with the pattern
string.

Match Regular Expression
The Match Regular Expression command matches a string to a Regular
Expression and returns the portions of the string which match the regular
expression.

Syntax
match regular expression compiledExpression

to candidateString

Parameters
compiledExpression

This parameter is a compiled regular expression. This value is
returned by the Compiler Regular Expression command.

candidateString
This parameter is the string that is to be matched to the regular
expression.

Result
The result of the Match Regular Expression command is a record containing the
following values:
matched

This Boolean value indicates if there was a match.
match string

This string value represents largest match found.
match 1 This string value represents the portion of the string matching the

first () expression.
match 2 This string value represents the portion of the string matching the

second () expression.
match 3 This string value represents the portion of the string matching the

third () expression.
match 4 This string value represents the portion of the string matching the

fourth () expression.
match 5 This string value represents the portion of the string matching the

fifth () expression.
match 6 This string value represents the portion of the string matching the

sixth () expression.
match 7 This string value represents the portion of the string matching the

seventh () expression.
match 8 This string value represents the portion of the string matching the

eighth () expression.
match 9 This string value represents the portion of the string matching the

ninth () expression.

Example
set pattern to ¬

compile regular expression "This (.*) test"
set result to match regular expression pattern ¬

to "This is a test"
{ result }

Output formatted for this document:

{
matched : TRUE,
matched string: "This is a test",
match 1: "is a"

}

Substitute Regular Expression
The Substitute Regular Expression command extracts the elements from a
candidate string which match the patterns of a Regular Expression and then
substitutes the extracted elements into a template string.

Syntax
substitute regular expression compiledExpression

of candidateString
with templateString

Parameters
compiledExpression

This parameter is a compiled Regular Expression pattern.
Regular Expressions are compiled using the Compile Regular
Expression command.

candidateString
This parameter is a string representing the text which is to be
compared to the Regular Expression and then modified.

templateStringThis parameter is a string representing a template for the
substitutions which are to be performed. See the section titled
"Replacements for Regular Expressions" below for a description
of the format of this string.

Result
The result is the substituted string.

Example
set pattern to ¬

compile regular expression "This (.*) test"
substitute regular expression pattern ¬

of "This is a test" with "---\\1---"

Result:

---is a---

Replacements for Regular Expressions
Within a template string the following conventions apply:
• A backslash quotes the following character. The special characters within a

template string are '&' and '\'; these are the only characters that need to be
quoted. The construct "\&" produces a single '&' and the construct "\\"
produces a single backslash.

• An ampersand (&) indicates the entire matched regular expression. For
example, the replacement "&&" would consist of two copies of the matched
expression.

• The sequence "\n", where n is a single digit, indicates the text matching
the nth parenthesized component of the regular expression

Speak
The Speak command uses the Apple Macintosh Speech Manager to speak text
strings. Note that because of its dependency on the Speech Manager, this
command only operates on Macintoshes which have the Speech Manager
installed.

Syntax
speak message

[voice voice]
[rate rate]
[pitch pitch]

Parameters
message This parameter is the text you want to have spoken.
voice This optional parameter allows you to specify the name of the

voice you want used when the message is spoken.
rate This optional parameter specifies the rate at which your message

is spoken. Express the rate as a number representing words per
minute.

pitch This optional parameter specifies the pitch at which your
message is spoken.

Result
none.

Example
speak "The wind blows mainly in the plains"

List Voices
The List Voices command obtains a list of the names of the voices available.
Note that because of its dependency on the Speech Manager, this command only
operates on Macintoshes which have the Speech Manager installed.

Syntax
list voices

Parameters
none.

Result
The result is a list of strings representing the names of all the Speech Manager
voices.

Example
list voices

Result:

{"Mr. Hughes", "Xero", "Votron", "Otis", "RoboVox", "Boris",
"Mariel", "Ben", "Brenda", "Marvin"}

Get Voice
The Get Voice command returns detailed information about a particular Speech
Manager voice. Note that because of its dependency on the Speech Manager,
this command only operates on Macintoshes which have the Speech Manager
installed.

Syntax
get voice voice

Parameters
voice This parameter specifies the name of the voice you want

information about.

Result
The result of the Get Voice command is a record containing the following

values:

voice version
This integer value represents the voice's version number.

voice name
This string is the voice's name.

comment This string further describes the voice.
gender This integer value defines the gender of the voice—1 = neuter, 2

= male and 3 = female.
age This integer value represents the approximate age of the voice.
voice script

This integer corresponds the voice's script code.
language This integer value is the voice's language code.

Example
get voice (first item of (list voices))

Output formatted for this document:

{
 version:65536,
 name:"Mr. Hughes",
 comment:"Adult male voice.",
 gender:1,
 age:30,
 script:0,
 language:0,
 region:0
}

Get Gestalt
The Get Gestalt command gets information about the operating environment.

Syntax
get gestalt selector]

[bit bitNumber]
[with/without report missing selectors]

Parameters
selector This parameter is a string representing the type of operating

environment information you want. This parameter must be a 4-
character code. The gestalt Selectors Lib file defines all of the
Gestalt selectors

documented in Inside Macintosh volume VI as well as selectors for Apple's
Speech Manager.

bitNumber This optional parameter defines which bit of the selectors value
to test. If this parameter is specified the command returns a
Boolean value. If the parameter is omitted the command returns
the entire selector value.

Result
The result of this command is either the selector's integer value when the bit
parameter is not specified. When the bit parameter is specified a Boolean
value is returned.

Notes
When the optional with report missing selectors is specified, the
Get Gestalt command reports errors associated with unknown selectors
Otherwise a value of 0 is returned.

Example
-- verify that the Speech Mgr is present

property gestaltSpeechAttr : "ttsc"
property gestaltSpeechMgrPresent : 0

if get gestalt gestaltSpeechAttr ¬
 bit gestaltSpeechMgrPresent then
 display dialog "Speech Mgr Present"
else
 display dialog "Speech Mgr Missing"
end if

List Processes
The List Processes command obtains a list of the names of the applications
running on your Macintosh. This includes normal Macintosh applications, desk
accessories and faceless-background-only applications.

Syntax
list processes

Parameters
none.

Result
The result is a list of strings representing the names of all the running

applications.

Example
list processes

Result:

{"PrintMonitor", "Scheduler", "File Sharing Extension",
"Finder", "Eyes", "Monitor", "Script Editor"}

Get Process
The Get Process command obtains detailed information about a running
application.

Syntax
get process processName

Parameters
processName This parameter specifies the name of the process you want

information about.

Result
The result of the Get Process command is a record containing the following
values:
process name

This string is the process's name.
process number

This value represents the process's serial number. AppleScript
translates this value into an application object automatically.

application type
This string is the application's four character file type. Normally
this value is "APPL".

signature This string is the application's four character signature.
partition size

This integer value represents the amount of memory the
application occupies.

free memory
This integer value represents the amount of free memory within
the application's partition.

launcher This string is the name of the application which launched this
application. If its blank then the application is no longer running.

launch date
This integer value represents the data and time when the
application was launched.

active time
This integer value is the amount of CPU time used by the
application since it was launched. The units for this value are
ticks (1/60th of a second).

application file
This value is a reference to the application's file.

deskAccessory
multiLaunch
needSuspendResume
canBackground
activateOnForegroundSwitch
compatible32Bit
onlyBackground
getFrontClicks
getApplicationDiedEvents
highLevelEventAware
localAndRemoteEvents
stationeryAware
useTextEditServices

These Boolean values represent the application's mode flags.

Example
get process (first item of (list processes))

Output formatted for this document:

{
 process name:"PrintLauncher",
 process number:application "PrintLauncher",
 application type:"appe",
 signature:"PRLN",
 partition size:40960,
 free memory:5018,
 launch date:date "Saturday, September 11, 1993 10:23:45
AM",
 active time:19605,
 application file:file "System Disk:System
Folder:Extensions:PrintLauncher",
 deskDccessory:false,
 multiLaunch:false,
 needSuspendResume:true,
 canBackground:true,
 activateOnForegroundSwitch:true,
 onlyBackground:true,
 getFrontClicks:false,

 getApplicationDiedEvents:false,
 compatible32Bit:true,

 highLevelEventAware:true,
 localAndRemoteEvents:false,
 stationeryAware:false,
 useTextEditServices:false,
 launcher:""
}

Get Foreground Process
The Get Foreground Process command gets name of the foreground application.
The foreground application is the application whose windows are presently
active. Note that the foreground application is not necessarily the current
application (see the Get Current Application command).

Syntax
get foreground process

Parameters
None.

Result
The result of this command is string representing the name of the foreground
application.

Example
get foreground process

Result:

"Script Editor"

Get Current Process
The Get Current Process command gets name of the currently executing
application. This command is useful for finding the name of the process
executing a script. The value returned by the Get Current Process command is
different from the value returned by the Get Foreground Process command
when the current process is in the background.

Syntax
get current process

Parameters
None.

Result
The result of this command is string representing the name of the currently
executing application.

Example
get current process

Result:

"Script Editor"

List Screens
The List Screens command obtains detailed information about each of the
Macintosh's display screens.

Syntax
list screens

Result
The result of the List Screens command is a list of records. Each record
describes a different display screen. The records contain the following values:
main screen

This Boolean value indicates weather or not the screen is the
main screen. The main screen is the screen containing the menu
bar.

bit depth This value represents the number of bits in the display screen.
bounds This value is the screens bounding rectangle.

Example
list screens

Output formatted for this document:

{
 {
 main screen:true,
 bit depth:1
 bounds:{0, 0, 1152, 882}

 },
 {
 main screen:false,
 bit depth:1
 bounds:{-512, 356, 0, 698}
 }
}

Addition/Command Cross Reference
The following table lists the commands defined in each of the ScriptTools
additions:

Choose Files & Folders Choose Folder
Choose New File
Choose Several Folders
Choose Several Files

File IO Open File
Close File
Create File
Create Folder
Delete File
Rename File
Exchange File
Move File
Read File
Write File
Get File Position
Position File
Lengthen File
Get Length

Shutdown Showdown
Regular Expressions Compile Regular Expression

Match Regular Expression
Substitute Regular Expression

Speech Speak
List Voices
Get Voice

Gestalt Get Gestalt
Processes List Processes

Get Process
Get Current Process
Get Foreground Process

List Screens List Screens

